Abstract:Hyperspectral images super-resolution aims to improve the spatial resolution, yet its performance is often limited at high-resolution ratios. The recent adoption of high-resolution reference images for super-resolution is driven by the poor spatial detail found in low-resolution HSIs, presenting it as a favorable method. However, these approaches cannot effectively utilize information from the reference image, due to the inaccuracy of alignment and its inadequate interaction between alignment and fusion modules. In this paper, we introduce a Spatial-Spectral Concordance Hyperspectral Super-Resolution (SSC-HSR) framework for unaligned reference RGB guided HSI SR to address the issues of inaccurate alignment and poor interactivity of the previous approaches. Specifically, to ensure spatial concordance, i.e., align images more accurately across resolutions and refine textures, we construct a Two-Stage Image Alignment with a synthetic generation pipeline in the image alignment module, where the fine-tuned optical flow model can produce a more accurate optical flow in the first stage and warp model can refine damaged textures in the second stage. To enhance the interaction between alignment and fusion modules and ensure spectral concordance during reconstruction, we propose a Feature Aggregation module and an Attention Fusion module. In the feature aggregation module, we introduce an Iterative Deformable Feature Aggregation block to achieve significant feature matching and texture aggregation with the fusion multi-scale results guidance, iteratively generating learnable offset. Besides, we introduce two basic spectral-wise attention blocks in the attention fusion module to model the inter-spectra interactions. Extensive experiments on three natural or remote-sensing datasets show that our method outperforms state-of-the-art approaches on both quantitative and qualitative evaluations.
Abstract:This report provides a comprehensive overview of the 4th Pixel-level Video Understanding in the Wild (PVUW) Challenge, held in conjunction with CVPR 2025. It summarizes the challenge outcomes, participating methodologies, and future research directions. The challenge features two tracks: MOSE, which focuses on complex scene video object segmentation, and MeViS, which targets motion-guided, language-based video segmentation. Both tracks introduce new, more challenging datasets designed to better reflect real-world scenarios. Through detailed evaluation and analysis, the challenge offers valuable insights into the current state-of-the-art and emerging trends in complex video segmentation. More information can be found on the workshop website: https://pvuw.github.io/.
Abstract:Novel view synthesis (NVS) in low-light scenes remains a significant challenge due to degraded inputs characterized by severe noise, low dynamic range (LDR) and unreliable initialization. While recent NeRF-based approaches have shown promising results, most suffer from high computational costs, and some rely on carefully captured or pre-processed data--such as RAW sensor inputs or multi-exposure sequences--which severely limits their practicality. In contrast, 3D Gaussian Splatting (3DGS) enables real-time rendering with competitive visual fidelity; however, existing 3DGS-based methods struggle with low-light sRGB inputs, resulting in unstable Gaussian initialization and ineffective noise suppression. To address these challenges, we propose LL-Gaussian, a novel framework for 3D reconstruction and enhancement from low-light sRGB images, enabling pseudo normal-light novel view synthesis. Our method introduces three key innovations: 1) an end-to-end Low-Light Gaussian Initialization Module (LLGIM) that leverages dense priors from learning-based MVS approach to generate high-quality initial point clouds; 2) a dual-branch Gaussian decomposition model that disentangles intrinsic scene properties (reflectance and illumination) from transient interference, enabling stable and interpretable optimization; 3) an unsupervised optimization strategy guided by both physical constrains and diffusion prior to jointly steer decomposition and enhancement. Additionally, we contribute a challenging dataset collected in extreme low-light environments and demonstrate the effectiveness of LL-Gaussian. Compared to state-of-the-art NeRF-based methods, LL-Gaussian achieves up to 2,000 times faster inference and reduces training time to just 2%, while delivering superior reconstruction and rendering quality.
Abstract:Multimodal Large Language Models (MLLMs) achieve remarkable performance for fine-grained pixel-level understanding tasks. However, all the works rely heavily on extra components, such as vision encoder (CLIP), segmentation experts, leading to high system complexity and limiting model scaling. In this work, our goal is to explore a highly simplified MLLM without introducing extra components. Our work is motivated by the recent works on Single trAnsformer as a unified vIsion-Language Model (SAIL) design, where these works jointly learn vision tokens and text tokens in transformers. We present Pixel-SAIL, a single transformer for pixel-wise MLLM tasks. In particular, we present three technical improvements on the plain baseline. First, we design a learnable upsampling module to refine visual token features. Secondly, we propose a novel visual prompt injection strategy to enable the single transformer to understand visual prompt inputs and benefit from the early fusion of visual prompt embeddings and vision tokens. Thirdly, we introduce a vision expert distillation strategy to efficiently enhance the single transformer's fine-grained feature extraction capability. In addition, we have collected a comprehensive pixel understanding benchmark (PerBench), using a manual check. It includes three tasks: detailed object description, visual prompt-based question answering, and visual-text referring segmentation. Extensive experiments on four referring segmentation benchmarks, one visual prompt benchmark, and our PerBench show that our Pixel-SAIL achieves comparable or even better results with a much simpler pipeline. Code and model will be released at https://github.com/magic-research/Sa2VA.
Abstract:The Finite Element Method (FEM) is widely used in engineering and scientific computing, but its pre-processing, solver configuration, and post-processing stages are often time-consuming and require specialized knowledge. This paper proposes an automated solution framework, MooseAgent, for the multi-physics simulation framework MOOSE, which combines large-scale pre-trained language models (LLMs) with a multi-agent system. The framework uses LLMs to understand user-described simulation requirements in natural language and employs task decomposition and multi-round iterative verification strategies to automatically generate MOOSE input files. To improve accuracy and reduce model hallucinations, the system builds and utilizes a vector database containing annotated MOOSE input cards and function documentation. We conducted experimental evaluations on several typical cases, including heat transfer, mechanics, phase field, and multi-physics coupling. The results show that MooseAgent can automate the MOOSE simulation process to a certain extent, especially demonstrating a high success rate when dealing with relatively simple single-physics problems. The main contribution of this research is the proposal of a multi-agent automated framework for MOOSE, which validates its potential in simplifying finite element simulation processes and lowering the user barrier, providing new ideas for the development of intelligent finite element simulation software. The code for the MooseAgent framework proposed in this paper has been open-sourced and is available at https://github.com/taozhan18/MooseAgent
Abstract:The landscape of image generation has rapidly evolved, from early GAN-based approaches to diffusion models and, most recently, to unified generative architectures that seek to bridge understanding and generation tasks. Recent advances, especially the GPT-4o, have demonstrated the feasibility of high-fidelity multimodal generation, their architectural design remains mysterious and unpublished. This prompts the question of whether image and text generation have already been successfully integrated into a unified framework for those methods. In this work, we conduct an empirical study of GPT-4o's image generation capabilities, benchmarking it against leading open-source and commercial models. Our evaluation covers four main categories, including text-to-image, image-to-image, image-to-3D, and image-to-X generation, with more than 20 tasks. Our analysis highlights the strengths and limitations of GPT-4o under various settings, and situates it within the broader evolution of generative modeling. Through this investigation, we identify promising directions for future unified generative models, emphasizing the role of architectural design and data scaling.
Abstract:Scanning Transmission Electron Microscopy (STEM) enables the observation of atomic arrangements at sub-angstrom resolution, allowing for atomically resolved analysis of the physical and chemical properties of materials. However, due to the effects of noise, electron beam damage, sample thickness, etc, obtaining satisfactory atomic-level images is often challenging. Enhancing STEM images can reveal clearer structural details of materials. Nonetheless, existing STEM image enhancement methods usually overlook unique features in the frequency domain, and existing datasets lack realism and generality. To resolve these issues, in this paper, we develop noise calibration, data synthesis, and enhancement methods for STEM images. We first present a STEM noise calibration method, which is used to synthesize more realistic STEM images. The parameters of background noise, scan noise, and pointwise noise are obtained by statistical analysis and fitting of real STEM images containing atoms. Then we use these parameters to develop a more general dataset that considers both regular and random atomic arrangements and includes both HAADF and BF mode images. Finally, we design a spatial-frequency interactive network for STEM image enhancement, which can explore the information in the frequency domain formed by the periodicity of atomic arrangement. Experimental results show that our data is closer to real STEM images and achieves better enhancement performances together with our network. Code will be available at https://github.com/HeasonLee/SFIN}{https://github.com/HeasonLee/SFIN.
Abstract:Referring video object segmentation (RVOS) is a challenging task that requires the model to segment the object in a video given the language description. MeViS is a recently proposed dataset that contains motion expressions of the target objects, leading to a challenging benchmark, compared with existing RVOS benchmarks. On the other hand, for referring expression tasks, a new trend is to adopt multi-modal large language model (MLLM) to achieve better image and text alignment. In this report, we show that with a simple modification to the test time inference method on stronger MLLMs, we can lead to stronger results on MeVIS. In particular, we adopt the recent method Sa2VA, a unified model for dense grounded understanding of both images and videos. By enlarging the scope of key frames, without any further training, we can achieve the 3rd place in the 4th PVUW workshop.
Abstract:Semantic 4D Gaussians can be used for reconstructing and understanding dynamic scenes, with temporal variations than static scenes. Directly applying static methods to understand dynamic scenes will fail to capture the temporal features. Few works focus on dynamic scene understanding based on Gaussian Splatting, since once the same update strategy is employed for both dynamic and static parts, regardless of the distinction and interaction between Gaussians, significant artifacts and noise appear. We propose Dual-Hierarchical Optimization (DHO), which consists of Hierarchical Gaussian Flow and Hierarchical Gaussian Guidance in a divide-and-conquer manner. The former implements effective division of static and dynamic rendering and features. The latter helps to mitigate the issue of dynamic foreground rendering distortion in textured complex scenes. Extensive experiments show that our method consistently outperforms the baselines on both synthetic and real-world datasets, and supports various downstream tasks. Project Page: https://sweety-yan.github.io/DHO.
Abstract:Extremely degraded grassland on the Qinghai-Tibetan Plateau (QTP) presents a significant environmental challenge due to overgrazing, climate change, and rodent activity, which degrade vegetation cover and soil quality. These extremely degraded grassland on QTP, commonly referred to as black-soil area, require accurate assessment to guide effective restoration efforts. In this paper, we present a newly created QTP black-soil dataset, annotated under expert guidance. We introduce a novel neural network model, BS-Mamba, specifically designed for the black-soil area detection using UAV remote sensing imagery. The BS-Mamba model demonstrates higher accuracy in identifying black-soil area across two independent test datasets than the state-of-the-art models. This research contributes to grassland restoration by providing an efficient method for assessing the extent of black-soil area on the QTP.